一些重要结构体和宏的定义

一般放在头文件

_IO_FILE

struct _IO_FILE
{
int _flags; /* High-order word is _IO_MAGIC; rest is flags. */

/* The following pointers correspond to the C++ streambuf protocol. */
char *_IO_read_ptr; /* Current read pointer */
char *_IO_read_end; /* End of get area. */
char *_IO_read_base; /* Start of putback+get area. */
char *_IO_write_base; /* Start of put area. */
char *_IO_write_ptr; /* Current put pointer. */
char *_IO_write_end; /* End of put area. */
char *_IO_buf_base; /* Start of reserve area. */
char *_IO_buf_end; /* End of reserve area. */

/* The following fields are used to support backing up and undo. */
/*备份和回退操作*/
char *_IO_save_base; /* Pointer to start of non-current get area. */
char *_IO_backup_base; /* Pointer to first valid character of backup area */
char *_IO_save_end; /* Pointer to end of non-current get area. */
/*标记所用*/
struct _IO_marker *_markers;
/*IO CHAIN利用的关键点*/
struct _IO_FILE *_chain;

int _fileno;/*文件描述符*/
int _flags2;
__off_t _old_offset; /* This used to be _offset but it's too small. */

/* 1+column number of pbase(); 0 is unknown. */
unsigned short _cur_column;
signed char _vtable_offset;
char _shortbuf[1];

_IO_lock_t *_lock;
#ifdef _IO_USE_OLD_IO_FILE
};

struct _IO_FILE_complete
{
struct _IO_FILE _file;
#endif
__off64_t _offset;
/* Wide character stream stuff. */
struct _IO_codecvt *_codecvt;
struct _IO_wide_data *_wide_data;
struct _IO_FILE *_freeres_list;
void *_freeres_buf;
size_t __pad5;
int _mode;
/* Make sure we don't get into trouble again. */
char _unused2[15 * sizeof (int) - 4 * sizeof (void *) - sizeof (size_t)];
}
//补充说明



/* A streammarker remembers a position in a buffer. */
struct _IO_marker {
struct _IO_marker *_next;
FILE *_sbuf;
/* If _pos >= 0
it points to _buf->Gbase()+_pos. FIXME comment */
/* if _pos < 0, it points to _buf->eBptr()+_pos. FIXME comment */
int _pos;
};

flag

/* Magic number and bits for the _flags field.  The magic number is
mostly vestigial, but preserved for compatibility. It occupies the
high 16 bits of _flags; the low 16 bits are actual flag bits. */

#define _IO_MAGIC 0xFBAD0000 /* Magic number 验证file结构体的有效性*/
#define _IO_MAGIC_MASK 0xFFFF0000
#define _IO_USER_BUF 0x0001 /* Don't deallocate buffer on close. */
#define _IO_UNBUFFERED 0x0002
#define _IO_NO_READS 0x0004 /* Reading not allowed. */
#define _IO_NO_WRITES 0x0008 /* Writing not allowed. */
#define _IO_EOF_SEEN 0x0010
#define _IO_ERR_SEEN 0x0020
#define _IO_DELETE_DONT_CLOSE 0x0040 /* Don't call close(_fileno) on close. */
#define _IO_LINKED 0x0080 /* In the list of all open files. */
#define _IO_IN_BACKUP 0x0100
#define _IO_LINE_BUF 0x0200
#define _IO_TIED_PUT_GET 0x0400 /* Put and get pointer move in unison. */
#define _IO_CURRENTLY_PUTTING 0x0800
#define _IO_IS_APPENDING 0x1000
#define _IO_IS_FILEBUF 0x2000
/* 0x4000 No longer used, reserved for compat. */
#define _IO_USER_LOCK 0x8000

/* Bits for the _flags2 field. 特殊扩展*/
#define _IO_FLAGS2_MMAP 1 /*如:mmap函数*/
#define _IO_FLAGS2_NOTCANCEL 2
#define _IO_FLAGS2_USER_WBUF 8
#define _IO_FLAGS2_NOCLOSE 32
#define _IO_FLAGS2_CLOEXEC 64
#define _IO_FLAGS2_NEED_LOCK 128

struct _IO_FILE_plus

struct _IO_FILE_plus
{
FILE file;
const struct _IO_jump_t *vtable;
}

_IO_jump_t

/*_IO_finish_t等变量都为函数指针*/
#define JUMP_FIELD(TYPE, NAME) TYPE NAME

struct _IO_jump_t
{
JUMP_FIELD(size_t, __dummy);
JUMP_FIELD(size_t, __dummy2);
JUMP_FIELD(_IO_finish_t, __finish);
JUMP_FIELD(_IO_overflow_t, __overflow);
JUMP_FIELD(_IO_underflow_t, __underflow);
JUMP_FIELD(_IO_underflow_t, __uflow);
JUMP_FIELD(_IO_pbackfail_t, __pbackfail);
/* showmany */
JUMP_FIELD(_IO_xsputn_t, __xsputn);
JUMP_FIELD(_IO_xsgetn_t, __xsgetn);
JUMP_FIELD(_IO_seekoff_t, __seekoff);
JUMP_FIELD(_IO_seekpos_t, __seekpos);
JUMP_FIELD(_IO_setbuf_t, __setbuf);
JUMP_FIELD(_IO_sync_t, __sync);
JUMP_FIELD(_IO_doallocate_t, __doallocate);
JUMP_FIELD(_IO_read_t, __read);
JUMP_FIELD(_IO_write_t, __write);
JUMP_FIELD(_IO_seek_t, __seek);
JUMP_FIELD(_IO_close_t, __close);
JUMP_FIELD(_IO_stat_t, __stat);
JUMP_FIELD(_IO_showmanyc_t, __showmanyc);
JUMP_FIELD(_IO_imbue_t, __imbue);
};

一些重要结构体实例的定义

一般放在.c文件,在头文件中写好extern声明,即可调用不同.c文件中的函数,文件中定义比较散乱,此处定义跨越几个.c文件

IO_2_1_stdin, IO_2_1_stdout,and IO_2_1_stderr

#  define FILEBUF_LITERAL(CHAIN, FLAGS, FD, WDP) \
{ _IO_MAGIC+_IO_LINKED+_IO_IS_FILEBUF+FLAGS, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (FILE *) CHAIN, FD, \
0, _IO_pos_BAD, 0, 0, { 0 }, 0, _IO_pos_BAD, \
NULL, WDP, 0 }
# endif

# define DEF_STDFILE(NAME, FD, CHAIN, FLAGS) \
static struct _IO_wide_data _IO_wide_data_##FD \
= { ._wide_vtable = &_IO_wfile_jumps }; \
struct _IO_FILE_plus NAME \
= {FILEBUF_LITERAL(CHAIN, FLAGS, FD, &_IO_wide_data_##FD), \
&_IO_file_jumps};

DEF_STDFILE(_IO_2_1_stdin_, 0, 0, _IO_NO_WRITES);
DEF_STDFILE(_IO_2_1_stdout_, 1, &_IO_2_1_stdin_, _IO_NO_READS);
DEF_STDFILE(_IO_2_1_stderr_, 2, &_IO_2_1_stdout_, _IO_NO_READS+_IO_UNBUFFERED);

#include "libioP.h"
#include "stdio.h"

#undef stdin
#undef stdout
#undef stderr
FILE *stdin = (FILE *) &_IO_2_1_stdin_;
FILE *stdout = (FILE *) &_IO_2_1_stdout_;
FILE *stderr = (FILE *) &_IO_2_1_stderr_;

_IO_file_jumps(存在许多虚表,这里以标准输入输出的filejump为例)


const struct _IO_jump_t _IO_file_jumps libio_vtable =
{
JUMP_INIT_DUMMY,
JUMP_INIT(finish, _IO_file_finish),
JUMP_INIT(overflow, _IO_file_overflow),
JUMP_INIT(underflow, _IO_file_underflow),
JUMP_INIT(uflow, _IO_default_uflow),
JUMP_INIT(pbackfail, _IO_default_pbackfail),
JUMP_INIT(xsputn, _IO_file_xsputn),
JUMP_INIT(xsgetn, _IO_file_xsgetn),
JUMP_INIT(seekoff, _IO_new_file_seekoff),
JUMP_INIT(seekpos, _IO_default_seekpos),
JUMP_INIT(setbuf, _IO_new_file_setbuf),
JUMP_INIT(sync, _IO_new_file_sync),
JUMP_INIT(doallocate, _IO_file_doallocate),
JUMP_INIT(read, _IO_file_read),
JUMP_INIT(write, _IO_new_file_write),
JUMP_INIT(seek, _IO_file_seek),
JUMP_INIT(close, _IO_file_close),
JUMP_INIT(stat, _IO_file_stat),
JUMP_INIT(showmanyc, _IO_default_showmanyc),
JUMP_INIT(imbue, _IO_default_imbue)
};

_IO_list_all

struct _IO_FILE_plus *_IO_list_all = &_IO_2_1_stderr_;

虚表中各个函数的实现

这是其他操作的基础,无论是库的读写接口,还是二次封装的printf之类的函数。

………………………

一些重要库内辅助函数的实现主要涉及(genops.c)

本人比较菜,多线程锁机制基本没怎么考虑。

其中有的函数是对虚表函数的封装

/* _IO_list_all相关,将fp链接进入或链接出去_IO_list_all*/
_IO_un_link (struct _IO_FILE_plus *fp);
_IO_link_in (struct _IO_FILE_plus *fp);

_IO_cleanup (void)

函数主体(genops.c)

genops这个文件比较抽象,既包括了对外可以直接用的函数,也就是exit等函数会调用的函数,也包括了一些跳表函数实现起来的共同可以使用的函数。

exit函数在结束时会调用此函数,进行缓冲区的刷新和释放。

/*清空缓冲区操作,首先会关闭所有的c++的stream流缓冲区,接着执行 _IO_unbuffer_all ();*/
int
_IO_cleanup (void)
{
/* We do *not* want locking. Some threads might use streams but
that is their problem, we flush them underneath them. */
int result = _IO_flush_all_lockp (0);

/* We currently don't have a reliable mechanism for making sure that
C++ static destructors are executed in the correct order.
So it is possible that other static destructors might want to
write to cout - and they're supposed to be able to do so.

The following will make the standard streambufs be unbuffered,
which forces any output from late destructors to be written out. */
_IO_unbuffer_all ();

return result;
}
/* 下面的处理有点复杂。通常,我们希望使流处于无缓冲状态,以确保随后所有的输出都能被看到。如果我们不关心内存泄漏的问题,那么实际上释放缓冲区并没有太大意义,因为程序终止后缓冲区会自动释放。如果我们确实关心内存泄漏问题,那么就必须释放这些缓冲区。是否释放缓冲区由位于 `libc_freeres` 部分的函数决定。这些函数与 `_IO_cleanup` 一样,都是作为 `atexit` 例程的一部分被调用。问题是我们不知道 `freeres` 代码和 `_IO_cleanup` 哪个会先被调用。如果 `freeres` 代码先被调用,我们将 `DEALLOC_BUFFER` 变量设置为 `true`,然后 `_IO_unbuffer_all` 函数会处理剩下的工作。如果 `_IO_unbuffer_all` 先被调用,我们会将流添加到一个列表中,以便 `freeres` 函数稍后可以遍历该列表。*/
/*legacy为兼容老版本所需*/

static void
_IO_unbuffer_all (void)
{
FILE *fp;

#ifdef _IO_MTSAFE_IO
_IO_cleanup_region_start_noarg (flush_cleanup);
_IO_lock_lock (list_all_lock);
#endif
/*注意for循环,一开始没看见想了半天哈哈哈*/
for (fp = (FILE *) _IO_list_all; fp; fp = fp->_chain)
{
int legacy = 0;

#if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_1)
if (__glibc_unlikely (_IO_vtable_offset (fp) != 0))
legacy = 1;
#endif

if (! (fp->_flags & _IO_UNBUFFERED)
/* Iff stream is un-orientated, it wasn't used. */
&& (legacy || fp->_mode != 0))
{
#ifdef _IO_MTSAFE_IO
int cnt;
#define MAXTRIES 2
for (cnt = 0; cnt < MAXTRIES; ++cnt)
if (fp->_lock == NULL || _IO_lock_trylock (*fp->_lock) == 0)
break;
else
/* Give the other thread time to finish up its use of the
stream. */
__sched_yield ();
#endif

if (! legacy && ! dealloc_buffers && !(fp->_flags & _IO_USER_BUF))
{
fp->_flags |= _IO_USER_BUF;

fp->_freeres_list = freeres_list;
freeres_list = fp;
fp->_freeres_buf = fp->_IO_buf_base;
}

_IO_SETBUF (fp, NULL, 0);

if (! legacy && fp->_mode > 0)
_IO_wsetb (fp, NULL, NULL, 0);

#ifdef _IO_MTSAFE_IO
if (cnt < MAXTRIES && fp->_lock != NULL)
_IO_lock_unlock (*fp->_lock);
#endif
}

/* Make sure that never again the wide char functions can be
used. */
if (! legacy)
fp->_mode = -1;
}

#ifdef _IO_MTSAFE_IO
_IO_lock_unlock (list_all_lock);
_IO_cleanup_region_end (0);
#endif
}

比较重要的宏(libioP.h)

以上述函数所用举例

#define _IO_SETBUF(FP, BUFFER, LENGTH) JUMP2 (__setbuf, FP, BUFFER, LENGTH)
#define JUMP2(FUNC, THIS, X1, X2) (_IO_JUMPS_FUNC(THIS)->FUNC) (THIS, X1, X2)
# define _IO_JUMPS_FUNC(THIS) (IO_validate_vtable (_IO_JUMPS_FILE_plus (THIS)))
/*以下为了得到虚表指针*/
#define _IO_JUMPS_FILE_plus(THIS) \
_IO_CAST_FIELD_ACCESS ((THIS), struct _IO_FILE_plus, vtable)
#define _IO_CAST_FIELD_ACCESS(THIS, TYPE, MEMBER) \
(*(_IO_MEMBER_TYPE (TYPE, MEMBER) *)(((char *) (THIS)) \
+ offsetof(TYPE, MEMBER)))
#define _IO_MEMBER_TYPE(TYPE, MEMBER) __typeof__ (((TYPE){}).MEMBER)
/* Offset of member MEMBER in a struct of type TYPE. */
#define offsetof(TYPE, MEMBER) __builtin_offsetof (TYPE, MEMBER)

最终跳表函数的实现(fileops.c)

FILE *
_IO_new_file_setbuf (FILE *fp, char *p, ssize_t len)
{
if (_IO_default_setbuf (fp, p, len) == NULL)
return NULL;

fp->_IO_write_base = fp->_IO_write_ptr = fp->_IO_write_end
= fp->_IO_buf_base;
_IO_setg (fp, fp->_IO_buf_base, fp->_IO_buf_base, fp->_IO_buf_base);

return fp;
}
FILE *
_IO_default_setbuf (FILE *fp, char *p, ssize_t len)
{
if (_IO_SYNC (fp) == EOF)
return NULL;
if (p == NULL || len == 0)
{
fp->_flags |= _IO_UNBUFFERED;
_IO_setb (fp, fp->_shortbuf, fp->_shortbuf+1, 0);
}
else
{
fp->_flags &= ~_IO_UNBUFFERED;
_IO_setb (fp, p, p+len, 0);
}
fp->_IO_write_base = fp->_IO_write_ptr = fp->_IO_write_end = 0;
fp->_IO_read_base = fp->_IO_read_ptr = fp->_IO_read_end = 0;
return fp;
}

_IO_flush_all_lockp (int do_lock)

刷新文件流

int
_IO_flush_all_lockp (int do_lock)
{
int result = 0;
FILE *fp;

#ifdef _IO_MTSAFE_IO
_IO_cleanup_region_start_noarg (flush_cleanup);
_IO_lock_lock (list_all_lock);
#endif

for (fp = (FILE *) _IO_list_all; fp != NULL; fp = fp->_chain)
{
run_fp = fp;
if (do_lock)
_IO_flockfile (fp);

if (((fp->_mode <= 0 && fp->_IO_write_ptr > fp->_IO_write_base)
|| (_IO_vtable_offset (fp) == 0
&& fp->_mode > 0 && (fp->_wide_data->_IO_write_ptr
> fp->_wide_data->_IO_write_base))
)
&& _IO_OVERFLOW (fp, EOF) == EOF)
result = EOF;

if (do_lock)
_IO_funlockfile (fp);
run_fp = NULL;
}

#ifdef _IO_MTSAFE_IO
_IO_lock_unlock (list_all_lock);
_IO_cleanup_region_end (0);
#endif

return result;
}

_IO_new_file_overflow

int
_IO_new_file_overflow (FILE *f, int ch)
{
if (f->_flags & _IO_NO_WRITES) /* SET ERROR */
{
f->_flags |= _IO_ERR_SEEN;
__set_errno (EBADF);
return EOF;
}
/* If currently reading or no buffer allocated. */
if ((f->_flags & _IO_CURRENTLY_PUTTING) == 0 || f->_IO_write_base == NULL)
{
/* Allocate a buffer if needed. */
if (f->_IO_write_base == NULL)
{
_IO_doallocbuf (f);
_IO_setg (f, f->_IO_buf_base, f->_IO_buf_base, f->_IO_buf_base);
}
/* Otherwise must be currently reading.
If _IO_read_ptr (and hence also _IO_read_end) is at the buffer end,
logically slide the buffer forwards one block (by setting the
read pointers to all point at the beginning of the block). This
makes room for subsequent output.
Otherwise, set the read pointers to _IO_read_end (leaving that
alone, so it can continue to correspond to the external position). */
if (__glibc_unlikely (_IO_in_backup (f)))
{
size_t nbackup = f->_IO_read_end - f->_IO_read_ptr;
_IO_free_backup_area (f);
f->_IO_read_base -= MIN (nbackup,
f->_IO_read_base - f->_IO_buf_base);
f->_IO_read_ptr = f->_IO_read_base;
}

if (f->_IO_read_ptr == f->_IO_buf_end)
f->_IO_read_end = f->_IO_read_ptr = f->_IO_buf_base;
f->_IO_write_ptr = f->_IO_read_ptr;
f->_IO_write_base = f->_IO_write_ptr;
f->_IO_write_end = f->_IO_buf_end;
f->_IO_read_base = f->_IO_read_ptr = f->_IO_read_end;

f->_flags |= _IO_CURRENTLY_PUTTING;
if (f->_mode <= 0 && f->_flags & (_IO_LINE_BUF | _IO_UNBUFFERED))
f->_IO_write_end = f->_IO_write_ptr;
}
if (ch == EOF)
return _IO_do_write (f, f->_IO_write_base,
f->_IO_write_ptr - f->_IO_write_base);
if (f->_IO_write_ptr == f->_IO_buf_end ) /* Buffer is really full */
if (_IO_do_flush (f) == EOF)
return EOF;
*f->_IO_write_ptr++ = ch;
if ((f->_flags & _IO_UNBUFFERED)
|| ((f->_flags & _IO_LINE_BUF) && ch == '\n'))
if (_IO_do_write (f, f->_IO_write_base,
f->_IO_write_ptr - f->_IO_write_base) == EOF)
return EOF;
return (unsigned char) ch;
}

库内公共接口函数的实现流程示例

对genops.c的二次封装

1. fopen为例

主要实现流程,具体函数实现有兴趣的自行观看吧。

a. __fopen_internal(iofopen.c)

FILE *
__fopen_internal (const char *filename, const char *mode, int is32)
{
struct locked_FILE
{
struct _IO_FILE_plus fp;
#ifdef _IO_MTSAFE_IO
_IO_lock_t lock;
#endif
struct _IO_wide_data wd;
} *new_f = (struct locked_FILE *) malloc (sizeof (struct locked_FILE));

if (new_f == NULL)
return NULL;
#ifdef _IO_MTSAFE_IO
new_f->fp.file._lock = &new_f->lock;
#endif
_IO_no_init (&new_f->fp.file, 0, 0, &new_f->wd, &_IO_wfile_jumps);
_IO_JUMPS (&new_f->fp) = &_IO_file_jumps;
_IO_new_file_init_internal (&new_f->fp);
if (_IO_file_fopen ((FILE *) new_f, filename, mode, is32) != NULL)
return __fopen_maybe_mmap (&new_f->fp.file);

_IO_un_link (&new_f->fp);
free (new_f);
return NULL;
}

FILE *
_IO_new_fopen (const char *filename, const char *mode)
{
return __fopen_internal (filename, mode, 1);
}

b. _IO_no_init and _IO_old_init(genops.c)

void
_IO_old_init (FILE *fp, int flags)
{
fp->_flags = _IO_MAGIC|flags;
fp->_flags2 = 0;
if (stdio_needs_locking)
fp->_flags2 |= _IO_FLAGS2_NEED_LOCK;
fp->_IO_buf_base = NULL;
fp->_IO_buf_end = NULL;
fp->_IO_read_base = NULL;
fp->_IO_read_ptr = NULL;
fp->_IO_read_end = NULL;
fp->_IO_write_base = NULL;
fp->_IO_write_ptr = NULL;
fp->_IO_write_end = NULL;
fp->_chain = NULL; /* Not necessary. */

fp->_IO_save_base = NULL;
fp->_IO_backup_base = NULL;
fp->_IO_save_end = NULL;
fp->_markers = NULL;
fp->_cur_column = 0;
#if _IO_JUMPS_OFFSET
fp->_vtable_offset = 0;
#endif
#ifdef _IO_MTSAFE_IO
if (fp->_lock != NULL)
_IO_lock_init (*fp->_lock);
#endif
}

void
_IO_no_init (FILE *fp, int flags, int orientation,
struct _IO_wide_data *wd, const struct _IO_jump_t *jmp)
{
_IO_old_init (fp, flags);
fp->_mode = orientation;
if (orientation >= 0)
{
fp->_wide_data = wd;
fp->_wide_data->_IO_buf_base = NULL;
fp->_wide_data->_IO_buf_end = NULL;
fp->_wide_data->_IO_read_base = NULL;
fp->_wide_data->_IO_read_ptr = NULL;
fp->_wide_data->_IO_read_end = NULL;
fp->_wide_data->_IO_write_base = NULL;
fp->_wide_data->_IO_write_ptr = NULL;
fp->_wide_data->_IO_write_end = NULL;
fp->_wide_data->_IO_save_base = NULL;
fp->_wide_data->_IO_backup_base = NULL;
fp->_wide_data->_IO_save_end = NULL;

fp->_wide_data->_wide_vtable = jmp;
}
else
/* Cause predictable crash when a wide function is called on a byte
stream. */
fp->_wide_data = (struct _IO_wide_data *) -1L;
fp->_freeres_list = NULL;
}

c._IO_new_file_init_internal(fileops.c)

void
_IO_new_file_init_internal (struct _IO_FILE_plus *fp)
{
/* POSIX.1 allows another file handle to be used to change the position
of our file descriptor. Hence we actually don't know the actual
position before we do the first fseek (and until a following fflush). */
fp->file._offset = _IO_pos_BAD;
fp->file._flags |= CLOSED_FILEBUF_FLAGS;

_IO_link_in (fp);
fp->file._fileno = -1;
}

d._IO_new_file_init_internal(fileops.c)

FILE *
_IO_file_fopen (FILE *fp, const char *filename, const char *mode,
int is32not64)
{
int oflags = 0, omode;
int read_write;
int oprot = 0666;
int i;
FILE *result;
const char *cs;
const char *last_recognized;

if (_IO_file_is_open (fp))
return 0;
switch (*mode)
{
case 'r':
omode = O_RDONLY;
read_write = _IO_NO_WRITES;
break;
case 'w':
omode = O_WRONLY;
oflags = O_CREAT|O_TRUNC;
read_write = _IO_NO_READS;
break;
case 'a':
omode = O_WRONLY;
oflags = O_CREAT|O_APPEND;
read_write = _IO_NO_READS|_IO_IS_APPENDING;
break;
default:
__set_errno (EINVAL);
return NULL;
}
last_recognized = mode;
for (i = 1; i < 7; ++i)
{
switch (*++mode)
{
case '\0':
break;
case '+':
omode = O_RDWR;
read_write &= _IO_IS_APPENDING;
last_recognized = mode;
continue;
case 'x':
oflags |= O_EXCL;
last_recognized = mode;
continue;
case 'b':
last_recognized = mode;
continue;
case 'm':
fp->_flags2 |= _IO_FLAGS2_MMAP;
continue;
case 'c':
fp->_flags2 |= _IO_FLAGS2_NOTCANCEL;
continue;
case 'e':
oflags |= O_CLOEXEC;
fp->_flags2 |= _IO_FLAGS2_CLOEXEC;
continue;
default:
/* Ignore. */
continue;
}
break;
}

result = _IO_file_open (fp, filename, omode|oflags, oprot, read_write,
is32not64);

if (result != NULL)
{
/* Test whether the mode string specifies the conversion. */
cs = strstr (last_recognized + 1, ",ccs=");
if (cs != NULL)
{
/* Yep. Load the appropriate conversions and set the orientation
to wide. */
struct gconv_fcts fcts;
struct _IO_codecvt *cc;
char *endp = __strchrnul (cs + 5, ',');
char *ccs = malloc (endp - (cs + 5) + 3);

if (ccs == NULL)
{
int malloc_err = errno; /* Whatever malloc failed with. */
(void) _IO_file_close_it (fp);
__set_errno (malloc_err);
return NULL;
}

*((char *) __mempcpy (ccs, cs + 5, endp - (cs + 5))) = '\0';
strip (ccs, ccs);

if (__wcsmbs_named_conv (&fcts, ccs[2] == '\0'
? upstr (ccs, cs + 5) : ccs) != 0)
{
/* Something went wrong, we cannot load the conversion modules.
This means we cannot proceed since the user explicitly asked
for these. */
(void) _IO_file_close_it (fp);
free (ccs);
__set_errno (EINVAL);
return NULL;
}

free (ccs);

assert (fcts.towc_nsteps == 1);
assert (fcts.tomb_nsteps == 1);

fp->_wide_data->_IO_read_ptr = fp->_wide_data->_IO_read_end;
fp->_wide_data->_IO_write_ptr = fp->_wide_data->_IO_write_base;

/* Clear the state. We start all over again. */
memset (&fp->_wide_data->_IO_state, '\0', sizeof (__mbstate_t));
memset (&fp->_wide_data->_IO_last_state, '\0', sizeof (__mbstate_t));

cc = fp->_codecvt = &fp->_wide_data->_codecvt;

cc->__cd_in.step = fcts.towc;

cc->__cd_in.step_data.__invocation_counter = 0;
cc->__cd_in.step_data.__internal_use = 1;
cc->__cd_in.step_data.__flags = __GCONV_IS_LAST;
cc->__cd_in.step_data.__statep = &result->_wide_data->_IO_state;

cc->__cd_out.step = fcts.tomb;

cc->__cd_out.step_data.__invocation_counter = 0;
cc->__cd_out.step_data.__internal_use = 1;
cc->__cd_out.step_data.__flags = __GCONV_IS_LAST | __GCONV_TRANSLIT;
cc->__cd_out.step_data.__statep = &result->_wide_data->_IO_state;

/* From now on use the wide character callback functions. */
_IO_JUMPS_FILE_plus (fp) = fp->_wide_data->_wide_vtable;

/* Set the mode now. */
result->_mode = 1;
}
}

return result;
}

库内二次封装的函数调用其的实现流程

此函数是对库内标准IO接口的二次封装,淡然也有非IO函数调用上述标准IO接口

待续…